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A b s t r a c t  

Temperature-modulated differential scanning calorimetry (TMDSC) is based on heat flow 
and represents a linear system for the measurement of heat capacity. As long as the measure- 
ments are carried out close to steady state and only a negligible temperature gradient exists 
within the sample, quantitative data can be gathered as a function of modulation frequency. Ap- 
plied to the glass transition, such measurements permit the determination the kinetic parameters 
of the material. Based on either the hole theory of liquids or irreversible thermodynamics, the 
necessary equations are derived to describe the apparent heat capacity as a function of frequency. 
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I n t r o d u c t i o n  

Modulated differential scanning calorimetry, MDSC, [1] is based on tem- 
perature modulation and has recently also been called TMDSC [2]. The mathe- 
matical treatment described in this paper uses the formalism developed for 
heat-flux calorimetry, as can be carried out with the TA Instruments MDSC 
2920, and is based on the prior, standard analysis of the glass transition by dy- 
namic differential thermal analysis, DDTA, that was first used in 1963 [3]. Data 
obtained with alternating differential scanning calorimetry (ADSC, Mettler- 
Toledo) or dynamic differential scanning calorimetry, (DDSC, Perkin-Elmer) 
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can be treated similarly after it is established that the system used is linear and 
the modulation does not introduce undue lags. 

In prior publications from our laboratory we have given a general mathe- 
matical description of MDSC [4], discussed a method of quasi-isothermal 
MDSC and gave the necessary calibration instructions and limits for producing 
high-quality data [5], and also addressed the questions of linearity, steady state, 
and complex heat capacity [6]. In the first paper of this series on the MDSC of 
the glass transition region, a qualitative study of polystyrene was given, show- 
ing the separation of the frequency effect of the modulation and the time effect 
of the underlying heating rate [7]. A quantitative evaluation of experimental 
data on polystyrene and poly(ethylene terephthalate) based on the present paper 
will be published as part III in this series [8]. A general, computer-generated 
lecture course on MDSC was produced, and is available through the World 
Wide Web [9]. 

The glass transition 

The glass transition is the major time-dependent transition in condensed 
matter [10]. It separates corresponding solid and mobile states of the same 
amount of disorder. In solids, small-amplitude vibrations with a fixed, average 
position and a time scale of picoseconds (10 -12 s) or less are the dominant ther- 
mal motion. In the mobile states, additional large-amplitude motion, such as 
translation, rotation, and internal rotation (conformational motion) cause the 
typical macroscopic mobility. Although the molecular time scale for large-am- 
plitude motion is also in the picosecond range, macroscopic effects may be slow 
due to the needed cooperativity of many elementary steps. The mechanisms of 
thermal motion and defect formation in crystals have been studied using mo- 
lecular dynamics simulations of systems with up to 30000 atoms [11]. 

The mobile states of matter can be divided into melts, liquid crystals, plastic 
crystals, and conformationally disordered crystals (condis crystals) [12]. These 
mobile phases are linked to their corresponding glasses (solids) through glass 
transitions. Each fully mobile part of the molecule (bead) contributes an ap- 
proximately fixed quantity to the heat capacity at the glass transition [13]. The 
basic glass transition of liquids is known for many years [ 14]. It is seen on vit- 
rification of liquids that are unable to crystallize for kinetic or structural 
reasons. The problems of assignment of the glass transition were recently re- 
viewed in a symposium of the American Society for Testing of Materials 
(ASTM) [15]. An operational definition of the glass transition temperature, Tg, 
fixes it at the point of half-vitrification or devitrification as indicated, for exam- 
ple, by the temperature where half the increase or decrease of heat capacity, 
ACp, is reached [16]. Naturally this point is time dependent. Special problems 
arise for the glass transitions in partially ordered systems [17]. It will also be of 
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interest to extend the kinetic analysis developed in this paper in the future to the 
glass transitions in partially ordered systems that show several unexplained ef- 
fects, such as a broadened glass transition range, a rigid amorphous fraction, 
and occasionally a loss of enthalpy relaxation. 

In the present discussion, the hole theory of the liquid state is used as a sim- 
ple model that can explain a glass transition-like behavior. Other models can be 
treated similarly. Especially the kinetics of the approach to equilibrium as given 
by irreversible thermodynamics can easily be adapted to the derived equations 
[10]. The hole theory was developed in the 1930s by Frenkel and Eyring [18]. 
It uses only a minimum of parameters. One assumes, that a liquid in equilib- 
rium has a number of holes, N* that depends on temperature. The energy re- 
quired to produce a hole, the hole energy, is ah, and can be estimated from the 
difference in heat capacity between liquid and solid, and the known cohesive 
energy density [13]. The heat capacities of many liquid and solid polymers are 
available in the ATHAS Data Bank [19]. The kinetics of the hole formation is, 
furthermore, governed by an activation energy, sj, and a preexponential factor, 
B, that contains the partition function ratio of the involved configurations dur- 
ing hole formation [3]. At the glass transition, the hole-equilibrium freezes be- 
cause not enough time is available to establish the hole equilibrium. The 
application of the hole theory to the glass transition was first suggested by Hirai 
and Eyring [20] and applied shortly thereafter to calorimetry, using DDTA [3]. 

Modulated calorimetry and steady state 

In MDSC a simple, sinusoidal modulation changes the block temperature 
Tb(t) to: 

Tb(t) = To + < q > t  + ATb sin(c0t)) (1) 

where < q > is the underlying heating rate, obtained by averaging over a fixed 
number of complete modulation periods; co, the modulation frequency 2re/p, 
with p representing the period of one cycle in seconds. The amplitude Arb is ad- 
justed such that a preset amplitude A is observed at the sample position. Typical 
modulations may have an amplitude A of 0.5 to 2 K and a period of 10 to 100 s. 
The condition for quantitative measurement must maintain a negligible tem- 
perature gradient within the sample [5, 6, 10]. Actual run parameters were es- 
tablished earlier [5]. 

The change in temperature as a function of time at the sample position of the 
calorimeter is given by [4]: 

T, ( t ) -  To -  < q t > = - q  --~(1 - e-Ktms) + 

+ A[cos~ sincot - sins cos~t + sins e-Kt/cq 

(2) 
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where T,(t) is the time-dependent sample temperature; To, the temperature at 
the start of the experiment; C,, the heat capacity of the sample calorimeter; K, 
the Newton's law constant; and s, the phase shift relative to the block temperature: 

(3)  sine = + o): 

The relationship cose sino)t - sine coso)t = sin(o)t - 6) can condense Eq. (2) 
and the equation sinZe + cos2e = 1 permits evaluation of cose. Steady state is 
reached in the presence of modulation as soon as e -~:t~cs becomes negligible. 
Analogous equations hold for the reference temperature and the temperature 
difference (equivalent to heat flow HF) with phase shifts of q) and 6, respec- 
tively. The calibration of K and measurement of A~,, the modulation amplitude 
of the temperature difference (or heat flow HF), allows then the calculation of 
the heat capacity at a given A and co: 

mCp = A#-~ ~I(KIo))2 + C'2 = -~- x K 'AZx  (4) 

where m is the sample mass; Cp, the specific heat capacity; C', the heat capacity 
of the empty reference calorimeter of identical mass to the empty sample calo- 
rimeter. The calibration constant K is independent of modulation frequency and 
reference heat capacity, K' changes on changing co and C'. 

Specially important is a knowledge of the change of steady state as one goes 
through heat capacity changes as, for example, in the glass transition coupled 
with a hysteresis peak, or a broad melting peak with a possibility of exothermic 
crystal perfection. To get a more quantitative insight into the distance from 
steady state, the calorimeter with the larger heat capacity (sample calorimeter) 
is analyzed. If it reaches a given percentage deviation from steady state, set for 
the present discussion at 5%, steady state is considered to be lost. The some- 
what large error is chosen since for the heat flow HF (or AT), both, the refer- 
ence temperature T~ and T, deviate from steady state and the difference should 
show a somewhat smaller error. Also, all calculations are carried out with a 
value of 50 s for Cs/K, a value on the large side for present day DSC. Typical val- 
ues for CJK may range from 1-100 s, depending on instrument construction and 
C,, the sample plus pan heat capacity. The modulation amplitude A is taken to be 
1.0 K, and the underlying heating rate < q > =3.0 K min-r(0.05 K s-~). Equation 
(2) can then be rewritten to express the distance from steady state A (in K): 

A =  T~(t) - To- <q>t+q~  -A[sin(o~t-~)] =[q~C~ +Asine]e -x~c8 (5) 

With the parameters just given, A~3 exp(-t/50), and it takes about 200 seconds 
to reach the 5% value when starting the measurement from Tb= T, = Tr= To (begin 
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of the experiment, t=0). The approximate steady-state lag of the temperature 
due to the underlying heating rate is < q > CJK=2.5 K, i.e. it is the dominating 
effect under the given conditions. For large modulation amplitudes and small 
values of CJK and/or < q >  the second term of Eq. (5) may well be more im- 
portant. 

Any subsequent change in C, will cause a new deviation from steady state 
that can be estimated analogously because of the linearity of the heat flux equa- 
tion [6]. An instantaneous, stepwise increase in heat capacity causes a deviation 
from steady state A that dies off with the exponential given by Eq. (5) (note that 
C, enters also into e). 

For a severe test of the lag during a glass transition, data for (hypothetical) 
amorphous polyethylene are used. The increase in C~ is 10 J (K mol) -1 at the 
glass transition temperature, Tg at 237 K, and the heat capacity of the solid is 
about 20 J (K mol) -1. Assuming, furthermore, the glass transition occurs line- 
arly over a temperature range of about 10 K (5% increase in heat capacity per 
kelvin of temperature increase), the plot of the lags is given in Fig. 1 by adding 
the appropriate multiple terms derived from Eq. (5). The filled squares repre- 
sent the increase in heat capacity in a lag-free experiment. The computed T~ 
shows the sample temperature one should be able to observe. The difference is 
the lag. The lag of 3 K in fixing the glass transition temperature shown in the 
figure is, perhaps, still acceptable for common determinations of the glass tran- 
sition, but must be corrected for in discussing the kinetics of the glass 
transition. The deviation of the heat capacity by more than 10% between 235 
and 243 K is certainly not acceptable as a quantitative result. For the reporting 
of Cp for the ATHAS Data Bank [19] this error was in the past eliminated by 
extrapolation of the solid and liquid heat capacities to Tg. For integration of the 

s0 I I ---J ! 
Change.in Hea't . / / " ; ' ~  / 4o yapac  (%)1 

20 % 

225 230 235 240 245 250 
Temperature (K) 

Fig. 1 Lags in the glass transition region. The eurve labelled T is the lag-free temperature 
(assumed); Ts, the sample temperature with lag; lag, the error in heat eapaeity under 
the ehosen (extreme) eonditions, see text 
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heat capacities to enthalpy, it was then assumed that a vertical increase of ACp 
occurs at T~. Comparing the polyethylene case with polystyrene or poly(ethyl- 
ene terephthalate), two polymers that are often used as standards [8], one sees 
changes of heat capacity of 19 and 30% at the glass transition, i.e. their lags are 
closer to the 5% error in heat capacity. Similarly, a reduction of C, and E en- 
ables quantitative heat capacity measurements through the glass transition by 
staying close to steady state. For highest precision, two sets of measurement 
should be made. One with large Q for the measurement of solid and liquid heat 
capacities, and one with small Ca in the glass transition region for the study of 
the kinetics. The latter is discussed next. 

The kinetics of the glass transition 

A qualitative analysis of the superposition of the reversible and irreversible 
processes in the glass transition region is schematically illustrated in Fig. 2. 
Somewhat below the glass transition temperature, Tg, the heat capacity consists 
practically only of vibrational contributions. Molecular dynamics simulations 
have shown that steady state for the vibrations in solids can be reached in pi- 
coseconds [11]. This time scale is practically instantaneous, and one can repre- 
sent the solid heat capacity simply by its vibrational, time-independent 
contribution Cpo: 

C v (solid) = Go (6) 

The vibrational heat capacity Cpo is available through the Advanced THermal 
Analysis System, ATHAS [19]. The parallel thin lines in the figure represent 
the enthalpies H(=JCvdT) of various glasses cooled at different rates (higher 
cooling rates for larger values of/-/). Once in the glassy state, all heat capacities 
(slopes of H) are closely similar but, as shown, not the enthalpies. 

Liquid 

(J) ~dO~'~'~'d dan I 

~ r t i : s  a t  d~ferent cooling rates 
T e m p e r a t u r e  (14:) 

Fig, 2 Schematic of the r in the glass transition region [5, 7] 
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In the liquid state, longer times are necessary to reach thermal equilibrium 
because of the need of the molecules to undergo the larger, cooperative, struc- 
tural changes. The hole equilibrium models the additional contribution to the 
heat capacity. It is given by the change in number of holes with temperature un- 
der equilibrium conditions: 

Cp(liquid) = C_,o+ ~ T ' )  (7) 

In the later discussion, the change in equilibrium number of holes with tem- 
perature, dN*/dT will be set equal to cz. Creation, motion, and destructions of 
holes are cooperative kinetic processes and may be slow. This leads to devia- 
tions from Eq. (7) if the measurement is carried out faster than the kinetics of 
the hole equilibrium allows. Applied to the glass transition, one can write a sim- 
ple, first-order kinetics expression to describe the time-dependence of the ac- 
tual number of holes in the glass-transition region: 

1(  N .  _ (8) 
,[ 

In Eq. (8) N represents the instantaneous number of holes, N*, the equilib- 
rium number of holes, and x is the relaxation time for the formation of holes. 
For both N* and z more detailed expressions are available through the hole the- 
ory [3]. In case one wants to describe the glass transition with irreversible 
thermodynamics to be independent of a specific model, the same equation can 
be used. The number of holes is then replaced by ~, the appropriate internal 
variable, and 1/z is proportional to the curvature of the free energy relative to 
the relaxing internal variable at equilibrium. The proportionality constant is the 
so-called phenomenoiogical coefficient [10]. Equation (8) holds always close to 
equilibrium. The better the kinetics is modeled by Eq. (8), the further from 
equilibrium can it be used. 

Some five to ten kelvins above Tg, most one-phase and one-component sys- 
tems show no kinetic effects for typical DSC heating or cooling rates 
(1-20 K min-~). The heat capacity is then equal to the slope of the heavy curve 
in Fig. 2. On going through Tg, the glassy state is reached at different tempera- 
tures for different cooling rates. Each cooling rate corresponds to freezing a 
different number of holes, giving rise to the multitude of glasses with distinct 
enthalpies, as indicated in the figure. In the temperature range where modula- 
tion frequency or underlying heating rate and relaxation times are comparable, 
Eq. (8) must be considered. 

A detailed MDSC analysis involves step-wise cooling and heating with long- 
time quasi-isothermal measurements. Let us consider steps between/'1 and T4 
[5, 7]. In such experiment < q> is zero and the effect of modulation frequency 
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is easily assessed. The case of linear heating rate without modulation was 
treated before [3]. At 7"1 the sample remains in equilibrium and the heat capac- 
ity is represented by Eq. (7). The effect of the kinetics can be included in Eq. 
(7) by writing: 

Cp~'(liq uid) - ~o = 1~,-~) t + "r (9) 

In this quasi-isothermal experiment dt/dT is fixed by the modulation as 
1/(c0 cosot) and ON/c3T is small.The time dependent contribution of the holes to 
Cp, the apparent AC~, is (using sec0 = 1/cos0): 

Cp~(liquid) _ Cv ~ = ACpa _ oh secAm c~ (1o) 

where the modulation frequency co is chosen to refer to the liquid sample 
[=cot-e of Eqs (2) and (5)]. In case of short relaxation times, equilibrium is 
reached without delay and the change in number of holes, dN/dt=Aczo~ coso~t, 
so that ACp=ehot, as expected from Eq. (7). 

Cooling quickly to T2 yields initially a glass, represented by the upper thin 
enthalpy line. At this temperature the modulation frequency is already too fast 
to measure anything but the heat capacity of the glass given by Cpo. Since the 
measurement is carried out over many modulation cycles, the enthalpy relaxes 
slowly in an irreversible process to the lower levels of enthalpy (as indicated by 
the vertical arrow). The rate of these enthalpy changes are little affected by the 
small temperature modulation, and thus not measured as a reversing contribu- 
tion by MDSC (N" and z can be assumed to be independent of modulation at 
this temperature). In a measurement with an appropriate heating rate < q > ,  the 
change in enthalpy appears in the nonreversing part of the heat flow as a typical 
hysteresis peak (enthalpy relaxation) [7]. The result can be expressed as: 

A n ( t )  = 8h(N* - No)e -(t-t~ (11) 

with AH(t) representing the enthalpy change between the initial time to and t. 
Equation (11) can be derived by multiplication of Eq. (8) with gh and integration 
from to to t. The center insert illustrates this downward drift in H at T2. Even if 
ultimately the equilibrium liquid were reached, as suggested in the figure, the 
measured heat capacity would still be that of the solid, since the hole equilib- 
rium does not change significantly during a single modulation period. Continu- 
ing to 7"3, the enthalpy relaxation is less because of a larger x, but again, 
unrecorded in the reversing heat capacity measurement. At T4, finally, a metast- 
able glass has been reached. 
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On reheating, the relaxations at T3 and Tz would, again, not be recorded as 
reversing effect, but note that the direction of the enthalpy relaxation is re- 
versed. After the jump to T~, finally, the relaxation time is sufficiently short so 
that Cp is represented by Eq. (7). On cooling and heating between T~ and Tz the 
heat capacity is intermediate between Eqs (6) and (7), giving a glass transition tem- 
perature at half-vitrification that is governed by the time scale of modulation. 

~  I J w = J.~.,C measuremerYa; i 

Heat Capacity 
:arl ,itrary un~)  ~ ' g . "  ] ' I 

measurernen ~ ~g I 

, . i  !!! T, mpo, turo (K.) 
or s.B Ktn~n) t/" 

350 360 370 380 390 400 

Fig. 3 Data of the heat capacity of polystyrene in the glass transition region measured at dif- 
ferent frequency [7] 

To follow the kinetics of the glass transition quantitatively in the critical tem- 
perature region between 7"1 and T2, we use quasi-isothermal experimentation 
with a sufficiently small amount of sample (small C,/K) and modulation to 
make the lag within the sample during the glass transition acceptable [Fig. ! 
and Eq. (5)]. In such experiment the second time scale introduced by the under- 
lying heating rate < q >  is eliminated and the mathematical analysis is 
simplified. Figure 3 shows a set of data for polystyrene [7]. The amplitude of 
modulation was chosen to give constant maximum heating and cooling rates of 
3.8 K min -~ for all three series of experiments. Inserting the maximum value 
for ~(AT, sine < 1) into Eq. (5) proves that the heat-flux MDSC can reproduce 
the change in heat capacity without significant lag due to heat conduction, i.e. 
one can analyze the observed heat capacity directly with the kinetics of the 
glass transition as given by Eq. (8). 

The solution of Eq. (8) was given before as [3, 21 ]: 

t 

N(t) = N(to) e -| + e-|176 N*(t') e~,(t)dt , 
x(t') 
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t 

to x(t ) 
(12) 

where to is the beginning of the experiment, and @(t) is the time-averaged 
(time)/(relaxation time) ratio. Both x and N* are to be inserted into Eq. (12) 
with their proper temperature and (through the modulation) time dependence. 

For the temperature dependence over the small modulation amplitude, one 
can assume that x can change with an Arrhenius temperature dependence 
[x=B exp{ej/(RT)}]. From the hole-theory a more detailed expression is avail- 
able [3]. With the modulation T= To +A sin~0t, the time-dependence of x can be 
written as: 

x(t') = B e ~j/tax~ <l + I~To~ ,i~t,~l (13) 

with To representing the quasi-isothermal base temperature. This expression 
leads to a rather involved Eq.(12) that can be solved, but is rather unhandy for 
comparison with the experiment. One notices, however, that the modulation 
amplitude A/To is quite small, so that it is possible first to replace [1 +(A/To) 
sinot] -I by [1--(A/To) sincot], and then develop the exponent into a series, keep- 
ing only the first two terms (e -x= 1-x +xZ/2-...), so that: 

z=  Xo(1 - A--~-LeRTo2 sino~t') (14) 

with Zo representing ~ at To [xo=B exp{ej/(RTo)}]. Equation (14) can now be in- 
tegrated to get an expression for @(t): 

@(t) = lx~o t +-A---~ ( 1 -  (15) 

During the initial moments of the modulation, the whole expression must be 
used to assess the hole equilibrium, but very soon, an almost modulation-inde- 
pendent value of @(t) results that is, as in the temperature independent case = 
(t-to)Ix. With this value Eq. (12) can now be solved more easily. 

To get an expression that can easily linked to experiment let us first treat the 
case that N is temperature dependent in the modulation range (dN'/dT=o0 and 
-r is not, i.e. -c(t)=-ro. The system will in this case reach a symmetrical steady- 
state of a reversing number of holes in the sample with a characteristic phase 
lag of ~, relative to cot. The solution of Eq. (8) is under these conditions: 

t 

N(t) = No e -at~ + e-~'~ NO + Ao~ sinOt'et/~o dt' 
to "Co 

(16) 

J. Thermal Anal., 47, 1996 



WUNDERLICH et al.: MDSC 1023 

with No representing the number of holes at the beginning of the experiment. This 
equation can easily be integrated. Setting to equal to zero, one finds by setting: 

3' = arcsin o (17) 

4(1/Xo)2 + 
and: 

1/To 
y = a rccos  (18)  

~/(1/Xo) 2 + 0> 2 

a solution that is similar to the approach to steady state due to heat flow 
[Eq. (2)1" 

N - No = (No - No*)e -v*~ + Ac~ siny cosy e -t/% + Aot cosy sin(c0t - 7) (19) 

After sufficient time, at steady state, N -  No varies as given by the last term of 
Eq. (19). 

The MDSC measures the heat capacity by forming the appropriate averages 
over integral modulation cycles as ratio of the heat flow to temperature ampli- 
tudes. One finds, thus, that the apparent heat capacity ACp ~ is eh ot cosy, the 
maximum amplitude of the phase-shifted heat flow [shx(N - No)] divided by the 
temperature amplitude A. The polystyrene data Of Fig. 3 can then be interpreted 
by fitting the experimental data. The phase lag 7 increases from zero at about 
380 K to 90 ~ at about 360 K. The (frequency dependent) glass transition tem- 
perature occurs at the point of half-devitrification, at a phase lag of 60 ~ Plot- 
ting the logarithm of To as a function of 1/Tone finds that the assumption of a 
temperature-independent z is only an approximation. Different modulation fre- 
quencies lead to different activation energies. The values of logxo at different 
amplitudes of modulation can, however, be extrapolated to zero amplitude to 
avoid the full solution of Eq. (12) with a temperature/time-dependent x. 

For the derivation of the expression with modulation affecting the equilib- 
rium number of holes N" and the relaxation time x, two normalized, dimen- 
sionless modulation amplitudes are introduced to describe the changes in N and 
x (Ar~=Ac~/No and A~=Asj/(RTo2), respectively.) 

Equation (6) becomes then: 

t 

N(t) = No e -tl~~ + e -t/~~ I No*(1 + Ar~ sino~t') eU~o dt' 
to %(1 - A~ sinot') 

(20) 

Because in integrating Eq. (20) one assumes steady state from Eq. (5), only the 
steady state solution can be utilized. It includes two components, one with the 
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phase angle y, as given in Eqs (17) and (18), and one with the phase angle 213, 
given by: 

2o) 
213 = arcsin (21) 

and: 

so that: 

1/% 
213 = arccos (22) 

(q~lho)2 + ~ 2  

A~t, cos213 cos2(cot- 13) 1 + (AN + A0cosy sin(c0t - 7) - 

(23) 

The level of N about which modulation occurs is now higher than No by 
ANA'r/2 and the second modulation term accelerates the relaxation during in- 
creasing T and decelerates it on decreasing T. Figure 4 is a sample graph of 
such modulation. Again, the measured average over the integral modulation-cy- 
cles of the ratio of the heat flow to temperature amplitude is given by the 
equation AC~=(N:Eh/A)(AN + AO cosy. Note that the first term of Eq. (23) does 
not contribute to ACp H, and that last term has the frequency 2co, double the 

1.0 , - " " .  N- N~ 

0.8 .," ,-~N--T / h X_,  
o.6 [ /.,- , ~, 
o ,  / /  \,,.. 

Parameters: ; ~ "Perfect 
�9 . ~ - ~ - ~  

~ 1.00 K = ~ - -  _+ " ~ _  
N= 0.2 tad 0.0 

= 1.0 tad -0.2 

-0-4' d reference~ ~.~,, "~, h/ 
*" sine wave ~ .~t-~L% " "~.~4 

-0.6 sin wt ~ eTrect" .~%p 

-0 .8  , )r 
N-N o I'ANA = " I ='B... gn 

| i l l  1 7 i l l  i I  i l l l l ] [ l l  i j i l l  ~ 

Angler,~ 0 50 100 150 200 250 300 350 

Fig. 4 Modulation of the glass transition region. Filled squares represent the reference sine 
wave at the sample temperature position (phase-lag corrected due to heat conduc- 
tion); Filled triangles give the modulation of the number of holes about the level 
0.125 (=A~I,/2); The two thin lines indicate the two contributions to Eq. (23) 
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modulation frequency, and is, thus also not considered by MDSC. A full analy- 
sis of experimental data and a comparison with the earlier analysis of the 
irreversible enthalpy relaxation results [3] is given in part III of this discussion 
of MDSC in the glass transition region. 

Conclusions 

The kinetics of the glass transition can be analyzed using MDSC if a number 
of conditions of steady state and negligible temperature gradient within the sam- 
ple are obeyed. Based on the hole theory or irreversible thermodynamics a 
separation of the different contributions to the kinetics Of the glass transition 
can be made (number of holes and relaxation time). A simplified analysis of ex- 
perimental data by extrapolation to zero modulation amplitude is suggested. It 
is now possible to interpret the reversible and irreversible parts of the heat ca- 
pacity in the glass transition region (apparent heat capacity and enthalpy 
relaxation, respectively). The equilibrium heat capacity is available through ex- 
tra- polation of data outside of the glass transition for the solid and liquid. 
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